Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{128}{4\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{128}{4\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{128\sqrt{6}}{24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 128 \sqrt{ 6 } : \color{blue}{ 8 } } { 24 : \color{blue}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{16\sqrt{6}}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 128 } \cdot \sqrt{6} = 128 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{6} } \cdot \sqrt{6} = 24 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 8 } $. |