Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{12}{\sqrt{15}-3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{12}{\sqrt{15}-3}\frac{\sqrt{15}+3}{\sqrt{15}+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{15}+36}{15+3\sqrt{15}-3\sqrt{15}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12\sqrt{15}+36}{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{15} + 3} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 12 } \cdot \left( \sqrt{15} + 3\right) = \color{blue}{12} \cdot \sqrt{15}+\color{blue}{12} \cdot3 = \\ = 12 \sqrt{15} + 36 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{15}-3\right) } \cdot \left( \sqrt{15} + 3\right) = \color{blue}{ \sqrt{15}} \cdot \sqrt{15}+\color{blue}{ \sqrt{15}} \cdot3\color{blue}{-3} \cdot \sqrt{15}\color{blue}{-3} \cdot3 = \\ = 15 + 3 \sqrt{15}- 3 \sqrt{15}-9 $$ |
| ③ | Simplify numerator and denominator |