Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{11}{\sqrt{22}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 11 }{\sqrt{ 22 }} \times \frac{ \color{orangered}{\sqrt{ 22 }} }{ \color{orangered}{\sqrt{ 22 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{11\sqrt{22}}{22} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 11 \sqrt{ 22 } : \color{blue}{ 11 } }{ 22 : \color{blue}{ 11 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{22}}{2}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 22 }}$. |
| ② | In denominator we have $ \sqrt{ 22 } \cdot \sqrt{ 22 } = 22 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 11 }$. |