Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{11}{9+8\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{11}{9+8\sqrt{5}}\frac{9-8\sqrt{5}}{9-8\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{99-88\sqrt{5}}{81-72\sqrt{5}+72\sqrt{5}-320} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{99-88\sqrt{5}}{-239} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-99+88\sqrt{5}}{239}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 9- 8 \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 11 } \cdot \left( 9- 8 \sqrt{5}\right) = \color{blue}{11} \cdot9+\color{blue}{11} \cdot- 8 \sqrt{5} = \\ = 99- 88 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 9 + 8 \sqrt{5}\right) } \cdot \left( 9- 8 \sqrt{5}\right) = \color{blue}{9} \cdot9+\color{blue}{9} \cdot- 8 \sqrt{5}+\color{blue}{ 8 \sqrt{5}} \cdot9+\color{blue}{ 8 \sqrt{5}} \cdot- 8 \sqrt{5} = \\ = 81- 72 \sqrt{5} + 72 \sqrt{5}-320 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Multiply both numerator and denominator by -1. |