Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10\sqrt{6}}{\sqrt{150}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10\sqrt{6}}{\sqrt{150}}\frac{\sqrt{150}}{\sqrt{150}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{300}{150} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 300 : \color{orangered}{ 150 } }{ 150 : \color{orangered}{ 150 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{150}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 \sqrt{6} } \cdot \sqrt{150} = 300 $$ Simplify denominator. $$ \color{blue}{ \sqrt{150} } \cdot \sqrt{150} = 150 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 150 } $. |
| ④ | Remove 1 from denominator. |