Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10\sqrt{6}}{20\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10\sqrt{6}}{20\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{60}{120} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 60 : \color{orangered}{ 60 } }{ 120 : \color{orangered}{ 60 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 \sqrt{6} } \cdot \sqrt{6} = 60 $$ Simplify denominator. $$ \color{blue}{ 20 \sqrt{6} } \cdot \sqrt{6} = 120 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 60 } $. |