Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10\sqrt{15}}{3+3\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10\sqrt{15}}{3+3\sqrt{5}}\frac{3-3\sqrt{5}}{3-3\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30\sqrt{15}-150\sqrt{3}}{9-9\sqrt{5}+9\sqrt{5}-45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{30\sqrt{15}-150\sqrt{3}}{-36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-30\sqrt{15}+150\sqrt{3}}{36}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3- 3 \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 \sqrt{15} } \cdot \left( 3- 3 \sqrt{5}\right) = \color{blue}{ 10 \sqrt{15}} \cdot3+\color{blue}{ 10 \sqrt{15}} \cdot- 3 \sqrt{5} = \\ = 30 \sqrt{15}- 150 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 3 + 3 \sqrt{5}\right) } \cdot \left( 3- 3 \sqrt{5}\right) = \color{blue}{3} \cdot3+\color{blue}{3} \cdot- 3 \sqrt{5}+\color{blue}{ 3 \sqrt{5}} \cdot3+\color{blue}{ 3 \sqrt{5}} \cdot- 3 \sqrt{5} = \\ = 9- 9 \sqrt{5} + 9 \sqrt{5}-45 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Multiply both numerator and denominator by -1. |