Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10}{\sqrt{2}-\sqrt{11}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10}{\sqrt{2}-\sqrt{11}}\frac{\sqrt{2}+\sqrt{11}}{\sqrt{2}+\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{2}+10\sqrt{11}}{2+\sqrt{22}-\sqrt{22}-11} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10\sqrt{2}+10\sqrt{11}}{-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{10\sqrt{2}+10\sqrt{11}}{9}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2} + \sqrt{11}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 } \cdot \left( \sqrt{2} + \sqrt{11}\right) = \color{blue}{10} \cdot \sqrt{2}+\color{blue}{10} \cdot \sqrt{11} = \\ = 10 \sqrt{2} + 10 \sqrt{11} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2}- \sqrt{11}\right) } \cdot \left( \sqrt{2} + \sqrt{11}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{11}\color{blue}{- \sqrt{11}} \cdot \sqrt{2}\color{blue}{- \sqrt{11}} \cdot \sqrt{11} = \\ = 2 + \sqrt{22}- \sqrt{22}-11 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |