Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10}{5+2\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10}{5+2\sqrt{5}}\frac{5-2\sqrt{5}}{5-2\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{50-20\sqrt{5}}{25-10\sqrt{5}+10\sqrt{5}-20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{50-20\sqrt{5}}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 5- 2 \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 } \cdot \left( 5- 2 \sqrt{5}\right) = \color{blue}{10} \cdot5+\color{blue}{10} \cdot- 2 \sqrt{5} = \\ = 50- 20 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 5 + 2 \sqrt{5}\right) } \cdot \left( 5- 2 \sqrt{5}\right) = \color{blue}{5} \cdot5+\color{blue}{5} \cdot- 2 \sqrt{5}+\color{blue}{ 2 \sqrt{5}} \cdot5+\color{blue}{ 2 \sqrt{5}} \cdot- 2 \sqrt{5} = \\ = 25- 10 \sqrt{5} + 10 \sqrt{5}-20 $$ |
| ③ | Simplify numerator and denominator |