Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10}{-\sqrt{70}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10}{-\sqrt{70}}\frac{\sqrt{70}}{\sqrt{70}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{70}}{-70} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{70}}{-7} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{\sqrt{70}}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{70}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 } \cdot \sqrt{70} = 10 \sqrt{70} $$ Simplify denominator. $$ \color{blue}{ - \sqrt{70} } \cdot \sqrt{70} = -70 $$ |
| ③ | Divide both numerator and denominator by 10. |