Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{10}{-7\sqrt{17}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{10}{-7\sqrt{17}}\frac{\sqrt{17}}{\sqrt{17}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{17}}{-119} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{10\sqrt{17}}{119}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{17}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 10 } \cdot \sqrt{17} = 10 \sqrt{17} $$ Simplify denominator. $$ \color{blue}{ - 7 \sqrt{17} } \cdot \sqrt{17} = -119 $$ |
| ③ | Place a negative sign in front of a fraction. |