Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1-2\sqrt{2}}{4\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1-2\sqrt{2}}{4\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{3}-2\sqrt{6}}{12}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 1- 2 \sqrt{2}\right) } \cdot \sqrt{3} = \color{blue}{1} \cdot \sqrt{3}\color{blue}{- 2 \sqrt{2}} \cdot \sqrt{3} = \\ = \sqrt{3}- 2 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{3} = 12 $$ |