Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-6\sqrt{3}}{8\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-6\sqrt{3}}{8\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-6\sqrt{15}}{40} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ -6 \sqrt{ 15 } : \color{blue}{ 2 } } { 40 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-3\sqrt{15}}{20}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ - 6 \sqrt{3} } \cdot \sqrt{5} = - 6 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ 8 \sqrt{5} } \cdot \sqrt{5} = 40 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |