Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-5}{5\sqrt{17}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-5}{5\sqrt{17}}\frac{\sqrt{17}}{\sqrt{17}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-5\sqrt{17}}{85} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-\sqrt{17}}{17}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{17}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ -5 } \cdot \sqrt{17} = - 5 \sqrt{17} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{17} } \cdot \sqrt{17} = 85 $$ |
| ③ | Divide both numerator and denominator by 5. |