Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-22}{15\sqrt{11}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-22}{15\sqrt{11}}\frac{\sqrt{11}}{\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-22\sqrt{11}}{165} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ -22 \sqrt{ 11 } : \color{blue}{ 11 } } { 165 : \color{blue}{ 11 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-2\sqrt{11}}{15}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{11}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ -22 } \cdot \sqrt{11} = - 22 \sqrt{11} $$ Simplify denominator. $$ \color{blue}{ 15 \sqrt{11} } \cdot \sqrt{11} = 165 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 11 } $. |