Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{-13}{\sqrt{13}}& \xlongequal{ }-\frac{13}{\sqrt{13}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}- \, \frac{ 13 }{\sqrt{ 13 }} \times \frac{ \color{orangered}{\sqrt{ 13 }} }{ \color{orangered}{\sqrt{ 13 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{13\sqrt{13}}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}- \, \frac{ 13 \sqrt{ 13 } : \color{blue}{ 13 } }{ 13 : \color{blue}{ 13 } } \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{\sqrt{13}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-\sqrt{13}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 13 }}$. |
| ② | In denominator we have $ \sqrt{ 13 } \cdot \sqrt{ 13 } = 13 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 13 }$. |