Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{15\sqrt{15}}{3\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15\sqrt{15}}{3\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{75\sqrt{3}}{15} \xlongequal{ } \\[1 em] & \xlongequal{ }5\sqrt{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 15 \sqrt{15} } \cdot \sqrt{5} = 75 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{5} } \cdot \sqrt{5} = 15 $$ |