Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{(6-\sqrt{4})\cdot(6+\sqrt{4})}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{36+12-12-4}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}32\end{aligned} $$ | |
| ① | $$ \color{blue}{ \left( 6- \sqrt{4}\right) } \cdot \left( 6 + \sqrt{4}\right) = \color{blue}{6} \cdot6+\color{blue}{6} \cdot \sqrt{4}\color{blue}{- \sqrt{4}} \cdot6\color{blue}{- \sqrt{4}} \cdot \sqrt{4} = \\ = 36 + 12-12-4 $$ |
| ② | Remove 1 from denominator. |