Step 1:
X - intercept are:
$$ \begin{aligned} & \color{blue}{ x_1 = 3-\sqrt{ 17 } } \\[1 em] & \color{blue}{ x_2 = 3+\sqrt{ 17 } } \end{aligned} $$To find the x-intercepts, we need to solve equation $ \dfrac{1}{2}x^2-3x-4 = 0 $. (use the quadratic equation solver to view a detailed explanation of how to solve the equation)
Step 2:
Y - intercept is point: $ y-inter=\left(0,~-4\right) $
To find y - coordinate of y - intercept, we need to compute $ f(0) $. In this example we have:
$$ f(\color{blue}{0}) = \frac{ 1 }{ 2 } \cdot \color{blue}{0}^2 -3 \cdot \color{blue}{0} -4 = -4$$Step 3:
Vertex is point: $V=\left(3,~-\dfrac{ 17 }{ 2 }\right) $
To find the x - coordinate of the vertex we use formula:
$$ x = -\frac{b}{2a} $$In this example: $ a = \frac{ 1 }{ 2 }, b = -3, c = -4 $. So, the x-coordinate of the vertex is:
$$ x = -\frac{b}{2a} = -\frac{ -3 }{ 2 \cdot \frac{ 1 }{ 2 } } = 3 $$$$ y = f \left( 3 \right) = \frac{ 1 }{ 2 } \left( 3 \right)^2 - 3 \cdot 3 ~ - ~ 4 = -\frac{ 17 }{ 2 } $$Step 4:
Focus is point: $ F=\left(3,~-8\right)$
The x - coordinate of the focus is $ x = -\dfrac{b}{2a} $
The y - coordinate of the focus is $ y = \dfrac{1-b^2}{4a} + c $