Solve $\color{blue}{x^2-18x-144 = 0}$ using factoring.
First we need to factor trinomial $ \color{blue}{ x^2-18x-144 } $ and than we use factored form to solve an equation $ \color{blue}{ x^2-18x-144 = 0} $.
Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -18 } ~ \text{ and } ~ \color{red}{ c = -144 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -18 } $ and multiply to $ \color{red}{ -144 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -144 }$.
PRODUCT = -144 | |
-1 144 | 1 -144 |
-2 72 | 2 -72 |
-3 48 | 3 -48 |
-4 36 | 4 -36 |
-6 24 | 6 -24 |
-8 18 | 8 -18 |
-9 16 | 9 -16 |
-12 12 | 12 -12 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -18 }$
PRODUCT = -144 and SUM = -18 | |
-1 144 | 1 -144 |
-2 72 | 2 -72 |
-3 48 | 3 -48 |
-4 36 | 4 -36 |
-6 24 | 6 -24 |
-8 18 | 8 -18 |
-9 16 | 9 -16 |
-12 12 | 12 -12 |
Step 4: Put 6 and -24 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-18x-144 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-18x-144 & = (x + 6)(x -24) \end{aligned} $$Step 5: Set each factor to zero and solve equations.
$$ \begin{array}{ccc} \begin{aligned} x+6 &= 0 \\ x &= -6 \end{aligned} & ~ & \begin{aligned} x-24 &= 0 \\ x &= 24 \end{aligned} \end{array} $$