Solve $\color{blue}{4x^2-10x+4 = 0}$ using the Quadratic Formula.
Step 1: Read the values of $ a $, $ b $, and $ c $ from the quadratic equation: $ a $ is the number in front of $ x^2 $, $ b $ is the number in front of $ x $, $ c $ is the number at the end. In our case:
$$ a = 4, \,\, b = -10, \,\, c = 4 $$Step 2: Plug in the values for $ a $, $ b $, and $ c $ into the quadratic formula.
$$ \begin{aligned} x_1,x_2 &= \frac{-b \pm \sqrt{b^2-4ac}}{2a} \\[1 em] x_1,x_2 &= \frac{ -(-10) \pm \sqrt{ (-10)^2 - 4 \cdot 4 \cdot 4} }{ 2 \cdot 4 } \end{aligned} $$Step 3: Simplify expression under the square root.
$$ x_1,x_2 = \frac{ 10 \pm \sqrt{ 36 } }{ 8 } $$Step 4: Solve for $ x $
$$ \begin{aligned} & \color{blue}{ x_1 = \frac{ 10~-~\sqrt{ 36 } }{ 8 } = \frac{ 1 }{ 2 } } \\\\ & \color{blue}{ x_2 = \frac{ 10~+~\sqrt{ 36 } }{ 8 } = 2 } \end{aligned} $$