Solve $\color{blue}{2x^2+3x-12 = 0}$ using the Quadratic Formula.
Step 1: Read the values of $ a $, $ b $, and $ c $ from the quadratic equation: $ a $ is the number in front of $ x^2 $, $ b $ is the number in front of $ x $, $ c $ is the number at the end. In our case:
$$ a = 2, \,\, b = 3, \,\, c = -12 $$Step 2: Plug in the values for $ a $, $ b $, and $ c $ into the quadratic formula.
$$ \begin{aligned} x_1,x_2 &= \frac{-b \pm \sqrt{b^2-4ac}}{2a} \\[1 em] x_1,x_2 &= \frac{ -3 \pm \sqrt{ 3 ^2 - 4 \cdot 2 \cdot (-12)} }{ 2 \cdot 2 } \end{aligned} $$Step 3: Simplify expression under the square root.
$$ x_1,x_2 = \frac{ -3 \pm \sqrt{ 105 } }{ 4 } $$Step 4: Solve for $ x $
$$ \begin{aligned} & \color{blue}{ x_1 = \frac{ -3~-~\sqrt{ 105 } }{ 4 } = -\frac{ 3 }{ 4 }-\frac{\sqrt{ 105 }}{ 4 } } \\\\ & \color{blue}{ x_2 = \frac{ -3~+~\sqrt{ 105 } }{ 4 } = -\frac{ 3 }{ 4 }+\frac{\sqrt{ 105 }}{ 4 } } \end{aligned} $$