STEP 1: find side $ a $
To find side $ a $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 24\, \text{cm}$ and $s = 26\, \text{cm}$ we have:
$$ \left( 24\, \text{cm} \right)^{2} + \frac{ a^2 }{ 4 } = \left( 26\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = \left( 26\, \text{cm} \right)^{2} - \left( 24\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = 676\, \text{cm}^2 - 576\, \text{cm}^2 $$ $$ a^2 = 100\, \text{cm}^2 \cdot 4 $$ $$ a^2 = 400\, \text{cm}^2 $$ $$ a = \sqrt{ 400\, \text{cm}^2 } $$$$ a = 20\, \text{cm} $$STEP 2: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $a = 20\, \text{cm}$ we have:
$$ B = \left( 20\, \text{cm} \right)^{2} $$ $$ B = 400\, \text{cm}^2 $$STEP 3: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 20\, \text{cm}$ and $s = 26\, \text{cm}$ we have:
$$ L = 40\, \text{cm} \cdot 26\, \text{cm} $$$$ L = 1040\, \text{cm}^2 $$STEP 4: find total surface $ A $
To find total surface $ A $ use formula:
$$ A = B + L $$After substituting $B = 400\, \text{cm}^2$ and $L = 1040\, \text{cm}^2$ we have:
$$ A = 400\, \text{cm}^2 + 1040\, \text{cm}^2 $$ $$ A = 400\, \text{cm}^2 + 1040\, \text{cm}^2 $$ $$ A = 1440\, \text{cm}^2 $$