STEP 1: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $a = 8\, \text{cm}$ we have:
$$ B = \left( 8\, \text{cm} \right)^{2} $$ $$ B = 64\, \text{cm}^2 $$STEP 2: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ s^2 + \frac{ a^2 }{ 4 } = e^2 $$After substituting $a = 8\, \text{cm}$ and $e = 8\, \text{cm}$ we have:
$$ s ^ {\,2} + \frac{ \left( 8\, \text{cm} \right)^{2} }{ 4 } = \left( 8\, \text{cm} \right)^{2} $$ $$ s ^ {\,2} + \frac{ 64\, \text{cm}^2 }{ 4 } = \left( 8\, \text{cm} \right)^{2} $$ $$ s ^ {\,2} + 16\, \text{cm}^2 = \left( 8\, \text{cm} \right)^{2} $$ $$ s ^ {\,2} = 64\, \text{cm}^2 - 16\, \text{cm}^2 $$ $$ s ^ {\,2} = 48\, \text{cm}^2 $$ $$ s = \sqrt{ 48\, \text{cm}^2 } $$$$ s = 4 \sqrt{ 3 }\, \text{cm} $$STEP 3: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 8\, \text{cm}$ and $s = 4 \sqrt{ 3 }\, \text{cm}$ we have:
$$ L = 16\, \text{cm} \cdot 4 \sqrt{ 3 }\, \text{cm} $$$$ L = 64 \sqrt{ 3 }\, \text{cm}^2 $$STEP 4: find total surface $ A $
To find total surface $ A $ use formula:
$$ A = B + L $$After substituting $B = 64\, \text{cm}^2$ and $L = 64 \sqrt{ 3 }\, \text{cm}^2$ we have:
$$ A = 64\, \text{cm}^2 + 64 \sqrt{ 3 }\, \text{cm}^2 $$ $$ A = 64\, \text{cm}^2 + 64 \sqrt{ 3 }\, \text{cm}^2 $$ $$ A = 174.8513\, \text{cm}^2 $$