STEP 1: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $a = 5\, \text{cm}$ we have:
$$ B = \left( 5\, \text{cm} \right)^{2} $$ $$ B = 25\, \text{cm}^2 $$STEP 2: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 5\, \text{cm}$ and $a = 5\, \text{cm}$ we have:
$$ \left( 5\, \text{cm} \right)^{2} + \frac{ \left( 5\, \text{cm} \right)^{2} }{ 4 }= s^2 $$ $$ 25\, \text{cm}^2 + \frac{ 25\, \text{cm}^2 }{ 4 }= s^2 $$ $$ 25\, \text{cm}^2 + \frac{ 25 }{ 4 }\, \text{cm}^2 = s^2 $$ $$ s^2 = \frac{ 125 }{ 4 }\, \text{cm}^2 $$ $$ s = \sqrt{ \frac{ 125 }{ 4 }\, \text{cm}^2 } $$$$ s = \frac{ 5 \sqrt{ 5}}{ 2 }\, \text{cm} $$STEP 3: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 5\, \text{cm}$ and $s = \dfrac{ 5 \sqrt{ 5}}{ 2 }\, \text{cm}$ we have:
$$ L = 10\, \text{cm} \cdot \frac{ 5 \sqrt{ 5}}{ 2 }\, \text{cm} $$$$ L = 25 \sqrt{ 5 }\, \text{cm}^2 $$STEP 4: find total surface $ A $
To find total surface $ A $ use formula:
$$ A = B + L $$After substituting $B = 25\, \text{cm}^2$ and $L = 25 \sqrt{ 5 }\, \text{cm}^2$ we have:
$$ A = 25\, \text{cm}^2 + 25 \sqrt{ 5 }\, \text{cm}^2 $$ $$ A = 25\, \text{cm}^2 + 25 \sqrt{ 5 }\, \text{cm}^2 $$ $$ A = 80.9017\, \text{cm}^2 $$