STEP 1: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $a = 2\, \text{cm}$ we have:
$$ B = \left( 2\, \text{cm} \right)^{2} $$ $$ B = 4\, \text{cm}^2 $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ V = \dfrac{ a ^{ 2 } \cdot h }{ 3 } $$After substituting $V = 8\, \text{cm}$ and $a = 2\, \text{cm}$ we have:
$$ 8\, \text{cm} = \dfrac{ 2\, \text{cm} ^{ 2 } \cdot h }{ 3 } $$$$ 8\, \text{cm} \cdot 3 = 2\, \text{cm} ^{ 2 } \cdot h $$$$ 24\, \text{cm} = 4\, \text{cm}^2 \cdot h $$$$ h = \dfrac{ 24\, \text{cm} }{ 4\, \text{cm}^2 } $$$$ h = 6\, \text{cm}^-1 $$STEP 3: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 6\, \text{cm}^-1$ and $a = 2\, \text{cm}$ we have:
$$ \left( 6\, \text{cm}^-1 \right)^{2} + \frac{ \left( 2\, \text{cm} \right)^{2} }{ 4 }= s^2 $$ $$ 36\, \text{cm}^-2 + \frac{ 4\, \text{cm}^2 }{ 4 }= s^2 $$ $$ 36\, \text{cm}^-2 + 1\, \text{cm}^2 = s^2 $$ $$ s^2 = 37\, \text{cm}^-2 $$ $$ s = \sqrt{ 37\, \text{cm}^-2 } $$$$ s = \sqrt{ 37 }\, \text{cm}^-1 $$STEP 4: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 2\, \text{cm}$ and $s = \sqrt{ 37 }\, \text{cm}^-1$ we have:
$$ L = 4\, \text{cm} \cdot \sqrt{ 37 }\, \text{cm}^-1 $$$$ L = 4 \sqrt{ 37 } $$STEP 5: find total surface $ A $
To find total surface $ A $ use formula:
$$ A = B + L $$After substituting $B = 4\, \text{cm}^2$ and $L = 4 \sqrt{ 37 }\, \text{cm}^0$ we have:
$$ A = 4\, \text{cm}^2 + 4 \sqrt{ 37 } $$ $$ A = 4\, \text{cm}^2 + 4 \sqrt{ 37 } $$ $$ A = 28.3311\, \text{cm}^2 $$