STEP 1: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $a = 12\, \text{cm}$ we have:
$$ B = \left( 12\, \text{cm} \right)^{2} $$ $$ B = 144\, \text{cm}^2 $$STEP 2: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 14.83\, \text{cm}$ and $a = 12\, \text{cm}$ we have:
$$ \left( 14.83\, \text{cm} \right)^{2} + \frac{ \left( 12\, \text{cm} \right)^{2} }{ 4 }= s^2 $$ $$ 219.9289\, \text{cm}^2 + \frac{ 144\, \text{cm}^2 }{ 4 }= s^2 $$ $$ 219.9289\, \text{cm}^2 + 36\, \text{cm}^2 = s^2 $$ $$ s^2 = 255.9289\, \text{cm}^2 $$ $$ s = \sqrt{ 255.9289\, \text{cm}^2 } $$$$ s = 15.9978\, \text{cm} $$STEP 3: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 12\, \text{cm}$ and $s = 15.9978\, \text{cm}$ we have:
$$ L = 24\, \text{cm} \cdot 15.9978\, \text{cm} $$$$ L = 383.9467\, \text{cm}^2 $$STEP 4: find total surface $ A $
To find total surface $ A $ use formula:
$$ A = B + L $$After substituting $B = 144\, \text{cm}^2$ and $L = 383.9467\, \text{cm}^2$ we have:
$$ A = 144\, \text{cm}^2 + 383.9467\, \text{cm}^2 $$ $$ A = 144\, \text{cm}^2 + 383.9467\, \text{cm}^2 $$ $$ A = 527.9467\, \text{cm}^2 $$