STEP 1: find base diagonal $ d $
To find base diagonal $ d $ use formula:
$$ d = \sqrt{ 2 } \cdot a $$After substituting $a = 41500\, \text{cm}$ we have:
$$ d = \sqrt{ 2 } \cdot 41500\, \text{cm} $$ $$ d = 41500 \sqrt{ 2 }\, \text{cm} $$STEP 2: find lateral edge $ e $
To find lateral edge $ e $ use Pythagorean Theorem:
$$ h^2 + \frac{ d^2 }{ 4 } = e^2 $$After substituting $h = 19200\, \text{cm}$ and $d = 41500 \sqrt{ 2 }\, \text{cm}$ we have:
$$ \left( 19200\, \text{cm} \right)^{2} + \frac{ \left( 41500 \sqrt{ 2 }\, \text{cm} \right)^{2} }{ 4 }= e^2 $$ $$ 368640000\, \text{cm}^2 + \frac{ 3444500000\, \text{cm}^2 }{ 4 }= e^2 $$ $$ 368640000\, \text{cm}^2 + 861125000\, \text{cm}^2 = e^2 $$ $$ e^2 = 1229765000\, \text{cm}^2 $$ $$ e = \sqrt{ 1229765000\, \text{cm}^2 } $$$$ e = 50 \sqrt{ 491906 }\, \text{cm} $$