To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $a = 7.9\, \text{cm}$ and $s = 10.3\, \text{cm}$ we have:
$$ h ^ {\,2} + \frac{ \left( 7.9\, \text{cm} \right)^{2} }{ 4 } = \left( 10.3\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + \frac{ 62.41\, \text{cm}^2 }{ 4 } = \left( 10.3\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + 15.6025\, \text{cm}^2 = \left( 10.3\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} = 106.09\, \text{cm}^2 - 15.6025\, \text{cm}^2 $$ $$ h ^ {\,2} = 90.4875\, \text{cm}^2 $$ $$ h = \sqrt{ 90.4875\, \text{cm}^2 } $$$$ h = 9.5125\, \text{cm} $$