To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $a = 230\, \text{cm}$ and $s = 186\, \text{cm}$ we have:
$$ h ^ {\,2} + \frac{ \left( 230\, \text{cm} \right)^{2} }{ 4 } = \left( 186\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + \frac{ 52900\, \text{cm}^2 }{ 4 } = \left( 186\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + 13225\, \text{cm}^2 = \left( 186\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} = 34596\, \text{cm}^2 - 13225\, \text{cm}^2 $$ $$ h ^ {\,2} = 21371\, \text{cm}^2 $$ $$ h = \sqrt{ 21371\, \text{cm}^2 } $$$$ h = \sqrt{ 21371 }\, \text{cm} $$