The polynomial generated from the given zeros is: $ P(x) = x^6-19x^5-6944x^4+146872x^3+11634128x^2-153891248x-6037257600 $
Step 1: Turn the zeros into factors:
| Zero | Factor |
| $ -22 $ | $ x+22 $ |
| $ 50 $ | $ x-50 $ |
| $ 59 $ | $ x-59 $ |
| $ 38 $ | $ x-38 $ |
| $ -72 $ | $ x+72 $ |
| $ -34 $ | $ x+34 $ |
Step 2: Multiply the factors together:
$$ P(x) = \left( x+22 \right) \cdot \left( x-50 \right) \cdot \left( x-59 \right) \cdot \left( x-38 \right) \cdot \left( x+72 \right) \cdot \left( x+34 \right) = x^6-19x^5-6944x^4+146872x^3+11634128x^2-153891248x-6037257600 $$