Step 1 :
To factor $ x^{3}-729 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = x $ and $ II = 9 $ , we have:
$$ x^{3}-729 = ( x-9 ) ( x^{2}+9x+81 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 9 } ~ \text{ and } ~ \color{red}{ c = 81 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 9 } $ and multiply to $ \color{red}{ 81 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = 81 }$.
| PRODUCT = 81 | |
| 1 81 | -1 -81 |
| 3 27 | -3 -27 |
| 9 9 | -9 -9 |
Step 4: Because none of these pairs will give us a sum of $ \color{blue}{ 9 }$, we conclude the polynomial cannot be factored.