Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -48 } ~ \text{ and } ~ \color{red}{ c = -324 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -48 } $ and multiply to $ \color{red}{ -324 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -324 }$.
| PRODUCT = -324 | |
| -1 324 | 1 -324 |
| -2 162 | 2 -162 |
| -3 108 | 3 -108 |
| -4 81 | 4 -81 |
| -6 54 | 6 -54 |
| -9 36 | 9 -36 |
| -12 27 | 12 -27 |
| -18 18 | 18 -18 |
Step 3: Find out which pair sums up to $\color{blue}{ b = -48 }$
| PRODUCT = -324 and SUM = -48 | |
| -1 324 | 1 -324 |
| -2 162 | 2 -162 |
| -3 108 | 3 -108 |
| -4 81 | 4 -81 |
| -6 54 | 6 -54 |
| -9 36 | 9 -36 |
| -12 27 | 12 -27 |
| -18 18 | 18 -18 |
Step 4: Put 6 and -54 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-48x-324 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-48x-324 & = (x + 6)(x -54) \end{aligned} $$