Step 1: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 2 } ~ \text{ and } ~ \color{red}{ c = -24 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 2 } $ and multiply to $ \color{red}{ -24 } $.
Step 2: Find out pairs of numbers with a product of $\color{red}{ c = -24 }$.
| PRODUCT = -24 | |
| -1 24 | 1 -24 |
| -2 12 | 2 -12 |
| -3 8 | 3 -8 |
| -4 6 | 4 -6 |
Step 3: Find out which pair sums up to $\color{blue}{ b = 2 }$
| PRODUCT = -24 and SUM = 2 | |
| -1 24 | 1 -24 |
| -2 12 | 2 -12 |
| -3 8 | 3 -8 |
| -4 6 | 4 -6 |
Step 4: Put -4 and 6 into placeholders to get factored form.
$$ \begin{aligned} k^{2}+2k-24 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ k^{2}+2k-24 & = (x -4)(x + 6) \end{aligned} $$