Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 9 }$ by the constant term $\color{blue}{c = 12} $.
$$ a \cdot c = 108 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 108 $ and add to $ b = -56 $.
Step 4: All pairs of numbers with a product of $ 108 $ are:
| PRODUCT = 108 | |
| 1 108 | -1 -108 |
| 2 54 | -2 -54 |
| 3 36 | -3 -36 |
| 4 27 | -4 -27 |
| 6 18 | -6 -18 |
| 9 12 | -9 -12 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -56 }$
| PRODUCT = 108 and SUM = -56 | |
| 1 108 | -1 -108 |
| 2 54 | -2 -54 |
| 3 36 | -3 -36 |
| 4 27 | -4 -27 |
| 6 18 | -6 -18 |
| 9 12 | -9 -12 |
Step 6: Replace middle term $ -56 x $ with $ -2x-54x $:
$$ 9x^{2}-56x+12 = 9x^{2}-2x-54x+12 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -6 $ out of the last two terms.
$$ 9x^{2}-2x-54x+12 = x\left(9x-2\right) -6\left(9x-2\right) = \left(x-6\right) \left(9x-2\right) $$