Step 1 :
After factoring out $ 3 $ we have:
$$ 90n^{2}-51n+6 = 3 ( 30n^{2}-17n+2 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 30 }$ by the constant term $\color{blue}{c = 2} $.
$$ a \cdot c = 60 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 60 $ and add to $ b = -17 $.
Step 5: All pairs of numbers with a product of $ 60 $ are:
| PRODUCT = 60 | |
| 1 60 | -1 -60 |
| 2 30 | -2 -30 |
| 3 20 | -3 -20 |
| 4 15 | -4 -15 |
| 5 12 | -5 -12 |
| 6 10 | -6 -10 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -17 }$
| PRODUCT = 60 and SUM = -17 | |
| 1 60 | -1 -60 |
| 2 30 | -2 -30 |
| 3 20 | -3 -20 |
| 4 15 | -4 -15 |
| 5 12 | -5 -12 |
| 6 10 | -6 -10 |
Step 7: Replace middle term $ -17 x $ with $ -5x-12x $:
$$ 30x^{2}-17x+2 = 30x^{2}-5x-12x+2 $$Step 8: Apply factoring by grouping. Factor $ 5x $ out of the first two terms and $ -2 $ out of the last two terms.
$$ 30x^{2}-5x-12x+2 = 5x\left(6x-1\right) -2\left(6x-1\right) = \left(5x-2\right) \left(6x-1\right) $$