Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 8 }$ by the constant term $\color{blue}{c = -100} $.
$$ a \cdot c = -800 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -800 $ and add to $ b = -7 $.
Step 4: All pairs of numbers with a product of $ -800 $ are:
| PRODUCT = -800 | |
| -1 800 | 1 -800 |
| -2 400 | 2 -400 |
| -4 200 | 4 -200 |
| -5 160 | 5 -160 |
| -8 100 | 8 -100 |
| -10 80 | 10 -80 |
| -16 50 | 16 -50 |
| -20 40 | 20 -40 |
| -25 32 | 25 -32 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -7 }$
| PRODUCT = -800 and SUM = -7 | |
| -1 800 | 1 -800 |
| -2 400 | 2 -400 |
| -4 200 | 4 -200 |
| -5 160 | 5 -160 |
| -8 100 | 8 -100 |
| -10 80 | 10 -80 |
| -16 50 | 16 -50 |
| -20 40 | 20 -40 |
| -25 32 | 25 -32 |
Step 6: Replace middle term $ -7 x $ with $ 25x-32x $:
$$ 8x^{2}-7x-100 = 8x^{2}+25x-32x-100 $$Step 7: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 8x^{2}+25x-32x-100 = x\left(8x+25\right) -4\left(8x+25\right) = \left(x-4\right) \left(8x+25\right) $$