Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 6 }$ by the constant term $\color{blue}{c = -5} $.
$$ a \cdot c = -30 $$Step 3: Find out two numbers that multiply to $ a \cdot c = -30 $ and add to $ b = -7 $.
Step 4: All pairs of numbers with a product of $ -30 $ are:
| PRODUCT = -30 | |
| -1 30 | 1 -30 |
| -2 15 | 2 -15 |
| -3 10 | 3 -10 |
| -5 6 | 5 -6 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -7 }$
| PRODUCT = -30 and SUM = -7 | |
| -1 30 | 1 -30 |
| -2 15 | 2 -15 |
| -3 10 | 3 -10 |
| -5 6 | 5 -6 |
Step 6: Replace middle term $ -7 x $ with $ 3x-10x $:
$$ 6x^{2}-7x-5 = 6x^{2}+3x-10x-5 $$Step 7: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -5 $ out of the last two terms.
$$ 6x^{2}+3x-10x-5 = 3x\left(2x+1\right) -5\left(2x+1\right) = \left(3x-5\right) \left(2x+1\right) $$