Step 1 :
To factor $ 64x^{3}-125 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = 4x $ and $ II = 5 $ , we have:
$$ 64x^{3}-125 = ( 4x-5 ) ( 16x^{2}+20x+25 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 16 }$ by the constant term $\color{blue}{c = 25} $.
$$ a \cdot c = 400 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 400 $ and add to $ b = 20 $.
Step 5: All pairs of numbers with a product of $ 400 $ are:
| PRODUCT = 400 | |
| 1 400 | -1 -400 |
| 2 200 | -2 -200 |
| 4 100 | -4 -100 |
| 5 80 | -5 -80 |
| 8 50 | -8 -50 |
| 10 40 | -10 -40 |
| 16 25 | -16 -25 |
| 20 20 | -20 -20 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 20 }$
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ 20 }$, we conclude the polynomial cannot be factored.