Step 1 :
After factoring out $ 7 $ we have:
$$ 63x^{2}-168x+49 = 7 ( 9x^{2}-24x+7 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 9 }$ by the constant term $\color{blue}{c = 7} $.
$$ a \cdot c = 63 $$Step 4: Find out two numbers that multiply to $ a \cdot c = 63 $ and add to $ b = -24 $.
Step 5: All pairs of numbers with a product of $ 63 $ are:
| PRODUCT = 63 | |
| 1 63 | -1 -63 |
| 3 21 | -3 -21 |
| 7 9 | -7 -9 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = -24 }$
| PRODUCT = 63 and SUM = -24 | |
| 1 63 | -1 -63 |
| 3 21 | -3 -21 |
| 7 9 | -7 -9 |
Step 7: Replace middle term $ -24 x $ with $ -3x-21x $:
$$ 9x^{2}-24x+7 = 9x^{2}-3x-21x+7 $$Step 8: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 9x^{2}-3x-21x+7 = 3x\left(3x-1\right) -7\left(3x-1\right) = \left(3x-7\right) \left(3x-1\right) $$