Step 1 :
After factoring out $ 5 $ we have:
$$ 5a^{4}-245 = 5 ( a^{4}-49 ) $$Step 2 :
Rewrite $ a^{4}-49 $ as:
$$ a^{4}-49 = (a^{2})^2 - (7)^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = a^{2} $ and $ II = 7 $ , we have:
$$ a^{4}-49 = (a^{2})^2 - (7)^2 = ( a^{2}-7 ) ( a^{2}+7 ) $$