Step 1 :
After factoring out $ 3 $ we have:
$$ 3x^{2}-6x-144 = 3 ( x^{2}-2x-48 ) $$Step 2 :
Step 2: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -2 } ~ \text{ and } ~ \color{red}{ c = -48 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -2 } $ and multiply to $ \color{red}{ -48 } $.
Step 3: Find out pairs of numbers with a product of $\color{red}{ c = -48 }$.
| PRODUCT = -48 | |
| -1 48 | 1 -48 |
| -2 24 | 2 -24 |
| -3 16 | 3 -16 |
| -4 12 | 4 -12 |
| -6 8 | 6 -8 |
Step 4: Find out which pair sums up to $\color{blue}{ b = -2 }$
| PRODUCT = -48 and SUM = -2 | |
| -1 48 | 1 -48 |
| -2 24 | 2 -24 |
| -3 16 | 3 -16 |
| -4 12 | 4 -12 |
| -6 8 | 6 -8 |
Step 5: Put 6 and -8 into placeholders to get factored form.
$$ \begin{aligned} x^{2}-2x-48 & = (x + \color{orangered}{\square} )(x + \color{orangered}{\square}) \\ x^{2}-2x-48 & = (x + 6)(x -8) \end{aligned} $$