Step 1: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 2: Multiply the leading coefficient $\color{blue}{ a = 12 }$ by the constant term $\color{blue}{c = 7} $.
$$ a \cdot c = 84 $$Step 3: Find out two numbers that multiply to $ a \cdot c = 84 $ and add to $ b = -31 $.
Step 4: All pairs of numbers with a product of $ 84 $ are:
| PRODUCT = 84 | |
| 1 84 | -1 -84 |
| 2 42 | -2 -42 |
| 3 28 | -3 -28 |
| 4 21 | -4 -21 |
| 6 14 | -6 -14 |
| 7 12 | -7 -12 |
Step 5: Find out which factor pair sums up to $\color{blue}{ b = -31 }$
| PRODUCT = 84 and SUM = -31 | |
| 1 84 | -1 -84 |
| 2 42 | -2 -42 |
| 3 28 | -3 -28 |
| 4 21 | -4 -21 |
| 6 14 | -6 -14 |
| 7 12 | -7 -12 |
Step 6: Replace middle term $ -31 x $ with $ -3x-28x $:
$$ 12x^{2}-31x+7 = 12x^{2}-3x-28x+7 $$Step 7: Apply factoring by grouping. Factor $ 3x $ out of the first two terms and $ -7 $ out of the last two terms.
$$ 12x^{2}-3x-28x+7 = 3x\left(4x-1\right) -7\left(4x-1\right) = \left(3x-7\right) \left(4x-1\right) $$