Step 1 :
After factoring out $ 5 $ we have:
$$ 10y^{2}+5y-180 = 5 ( 2y^{2}+y-36 ) $$Step 2 :
Step 2: Identify constants $ a $ , $ b $ and $ c $.
$ a $ is a number in front of the $ x^2 $ term $ b $ is a number in front of the $ x $ term and $ c $ is a constant. In this case:
Step 3: Multiply the leading coefficient $\color{blue}{ a = 2 }$ by the constant term $\color{blue}{c = -36} $.
$$ a \cdot c = -72 $$Step 4: Find out two numbers that multiply to $ a \cdot c = -72 $ and add to $ b = 1 $.
Step 5: All pairs of numbers with a product of $ -72 $ are:
| PRODUCT = -72 | |
| -1 72 | 1 -72 |
| -2 36 | 2 -36 |
| -3 24 | 3 -24 |
| -4 18 | 4 -18 |
| -6 12 | 6 -12 |
| -8 9 | 8 -9 |
Step 6: Find out which factor pair sums up to $\color{blue}{ b = 1 }$
| PRODUCT = -72 and SUM = 1 | |
| -1 72 | 1 -72 |
| -2 36 | 2 -36 |
| -3 24 | 3 -24 |
| -4 18 | 4 -18 |
| -6 12 | 6 -12 |
| -8 9 | 8 -9 |
Step 7: Replace middle term $ 1 x $ with $ 9x-8x $:
$$ 2x^{2}+x-36 = 2x^{2}+9x-8x-36 $$Step 8: Apply factoring by grouping. Factor $ x $ out of the first two terms and $ -4 $ out of the last two terms.
$$ 2x^{2}+9x-8x-36 = x\left(2x+9\right) -4\left(2x+9\right) = \left(x-4\right) \left(2x+9\right) $$