Step 1 :
Rewrite $ -x^{6}+1 $ as:
$$ -x^{6}+1 = 1 -x^6 = (1)^2 - (x^{3})^2 $$Now we can apply the difference of squares formula.
$$ I^2 - II^2 = (I - II)(I + II) $$After putting $ I = 1 $ and $ II = x^{3} $ , we have:
$$ -x^{6}+1 = (1)^2 - (x^{3})^2 = ( -x^{3}+1 ) ( x^{3}+1 ) $$Step 2 :
To factor $ -x^{3}+1 $ we can use difference of cubes formula:
$$ I^3 - II^3 = (I - II)(I^2 + I \cdot II + II^2) $$After putting $ I = 1 $ and $ II = x $ , we have:
$$ -x^{3}+1 = ( -x+1 ) ( x^{2}+x+1 ) $$Step 3 :
Step 3: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 1 } ~ \text{ and } ~ \color{red}{ c = 1 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 1 } $ and multiply to $ \color{red}{ 1 } $.
Step 4: Find out pairs of numbers with a product of $\color{red}{ c = 1 }$.
| PRODUCT = 1 | |
| 1 1 | -1 -1 |
Step 5: Because none of these pairs will give us a sum of $ \color{blue}{ 1 }$, we conclude the polynomial cannot be factored.
Step 4 :
To factor $ x^{3}+1 $ we can use sum of cubes formula:
$$ I^3 - II^3 = (I + II)(I^2 - I \cdot II + II^2) $$After putting $ I = x $ and $ II = 1 $ , we have:
$$ x^{3}+1 = ( x+1 ) ( x^{2}-x+1 ) $$Step 5 :
Step 5: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = 1 } ~ \text{ and } ~ \color{red}{ c = 1 }$$Now we must discover two numbers that sum up to $ \color{blue}{ 1 } $ and multiply to $ \color{red}{ 1 } $.
Step 6: Find out pairs of numbers with a product of $\color{red}{ c = 1 }$.
| PRODUCT = 1 | |
| 1 1 | -1 -1 |
Step 7: Because none of these pairs will give us a sum of $ \color{blue}{ 1 }$, we conclude the polynomial cannot be factored.
Step 6 :
Step 6: Identify constants $ \color{blue}{ b }$ and $\color{red}{ c }$. ( $ \color{blue}{ b }$ is a number in front of the $ x $ term and $ \color{red}{ c } $ is a constant). In our case:
$$ \color{blue}{ b = -1 } ~ \text{ and } ~ \color{red}{ c = 1 }$$Now we must discover two numbers that sum up to $ \color{blue}{ -1 } $ and multiply to $ \color{red}{ 1 } $.
Step 7: Find out pairs of numbers with a product of $\color{red}{ c = 1 }$.
| PRODUCT = 1 | |
| 1 1 | -1 -1 |
Step 8: Because none of these pairs will give us a sum of $ \color{blue}{ -1 }$, we conclude the polynomial cannot be factored.