$$ \begin{aligned} \frac{3x^2-12x^2+3x}{3x} &= 0&& \text{multiply ALL terms by } \color{blue}{ 3x }. \\[1 em]3x \cdot \frac{3x^2-12x^2+3x}{3x} &= 3x\cdot0&& \text{cancel out the denominators} \\[1 em]-9x^4+3x^3 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ -9x^{4}+3x^{3} = 0 } $, first we need to factor our $ x^3 $.
$$ -9x^{4}+3x^{3} = x^3 \left( -9x+3 \right) $$
$ x = 0 $ is a root of multiplicity $ 3 $.
The second root can be found by solving equation $ -9x+3 = 0$.
This page was created using
Polynomial Equations Solver