◀ back to index
Question
$$(x+\frac{1}{2}x+5\frac{x}{2}x)\cdot0 = 0$$
Answer
The equation has an infinite number of solutions.
Explanation
$$ \begin{aligned} (x+\frac{1}{2}x+5\frac{x}{2}x)\cdot0 &= 0&& \text{simplify left side} \\[1 em]((1+\frac{1}{2})x+\frac{5x}{2}x)\cdot0 &= 0&& \\[1 em](\frac{3}{2}x+\frac{5x^2}{2})\cdot0 &= 0&& \\[1 em](\frac{3x}{2}+\frac{5x^2}{2})\cdot0 &= 0&& \\[1 em]\frac{5x^2+3x}{2}\cdot0 &= 0&& \\[1 em]\frac{0}{2} &= 0&& \\[1 em]0 &= 0&& \\[1 em] \end{aligned} $$
Since the statement $ \color{blue}{ 0 = 0 } $ is TRUE for any value of $ x $, we conclude that the equation has infinitely many solutions.
This page was created using
Polynomial Equations Solver