STEP 1: find base area $ AB $
To find base area $ AB $ use formula:
$$ AB = r^2 \cdot \pi $$After substituting $r = 11\, \text{cm}$ we have:
$$ AB = \left( 11\, \text{cm} \right)^{2} \cdot \pi $$ $$ AB = 121\, \text{cm}^2 \cdot \pi $$STEP 2: find lateral area $ AL $
To find lateral area $ AL $ use formula:
$$ AL = 2 \cdot h \cdot r \cdot \pi $$After substituting $r = 11\, \text{cm}$ and $h = 25.8\, \text{cm}$ we have:
$$ AL = 51.6\, \text{cm} \cdot 11\, \text{cm} \cdot \pi $$$$ AL = 567.6\pi\, \text{cm}^2 $$STEP 3: find area $ A $
To find area $ A $ use formula:
$$ A = 2 AB + AL $$After substituting $AB = 121\pi\, \text{cm}^2$ and $AL = 567.6\pi\, \text{cm}^2$ we have:
$$ A = 2 \cdot 121\pi\, \text{cm}^2 + 567.6\pi\, \text{cm}^2 $$ $$ A = 242\pi\, \text{cm}^2 + 567.6\, \text{cm}^2 $$ $$ A = 1327.8654\, \text{cm}^2 $$