Tap the blue circles to see an explanation.
| $$ \begin{aligned}x+\frac{\frac{7}{x}}{7}+7& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x+\frac{1}{x}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2+1}{x}+7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^2+7x+1}{x}\end{aligned} $$ | |
| ① | Divide $ \dfrac{7}{x} $ by $ 7 $ to get $ \dfrac{ 1 }{ x } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{blue}{ 7 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{7}{x} }{7} & \xlongequal{\text{Step 1}} \frac{7}{x} \cdot \frac{\color{blue}{1}}{\color{blue}{7}} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{x} \cdot \frac{1}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot 1 }{ x \cdot 1 } \xlongequal{\text{Step 4}} \frac{ 1 }{ x } \end{aligned} $$ |
| ② | Add $x$ and $ \dfrac{1}{x} $ to get $ \dfrac{ \color{purple}{ x^2+1 } }{ x }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{x^2+1}{x} $ and $ 7 $ to get $ \dfrac{ \color{purple}{ x^2+7x+1 } }{ x }$. Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |