Tap the blue circles to see an explanation.
| $$ \begin{aligned}x\cdot2+9x+\frac{18}{x}\cdot2+12x+36& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}11x+\frac{18}{x}\cdot2+12x+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}11x+\frac{36}{x}+12x+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{11x^2+36}{x}+12x+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{23x^2+36}{x}+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{23x^2+36x+36}{x}\end{aligned} $$ | |
| ① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{9x} = \color{blue}{11x} $$ |
| ② | Multiply $ \dfrac{18}{x} $ by $ 2 $ to get $ \dfrac{ 36 }{ x } $. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{18}{x} \cdot 2 & \xlongequal{\text{Step 1}} \frac{18}{x} \cdot \frac{2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 18 \cdot 2 }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 36 }{ x } \end{aligned} $$ |
| ③ | Add $11x$ and $ \dfrac{36}{x} $ to get $ \dfrac{ \color{purple}{ 11x^2+36 } }{ x }$. Step 1: Write $ 11x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{11x^2+36}{x} $ and $ 12x $ to get $ \dfrac{ \color{purple}{ 23x^2+36 } }{ x }$. Step 1: Write $ 12x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Add $ \dfrac{23x^2+36}{x} $ and $ 36 $ to get $ \dfrac{ \color{purple}{ 23x^2+36x+36 } }{ x }$. Step 1: Write $ 36 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |